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Introduction

- Offline data boosts RL's sample efficiency:.
- However, existing methods commonly need
reward-labeled offline data or expert data.
- |n practice, there is ample non-expert and
reward-free offline data, but how to use it?

Table 1. Comparison with different policy learning methods that leverage offline data.
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RL Fine-tuning

- An embodiment-agnostic world model is
trained on the non-curated offline data.
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- During fine-tuning, we introduce
1) experience retrievalto collect
task-relevant data from the offline data,
2) execution guidance to help exploration.

- Policy is updated by:
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Results

1. A single pre-trained world model boosts
RL training across multiple embodiments.
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2. The pre-trained world model enables
fast task adaptation.
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3. Experience rehearsal and execution
guidance boost performance.
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Limitations

The world model uses the recurrent state
space model, which limits the scalability:.
The method doesn’t utilize action-free data.
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